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Living cells, either prokaryote or eukaryote, can be integrated within whole-cell biochips �WCBCs� for
various applications. We investigate WCBCs where information is extracted from the cells via a cascade of
biochemical reactions that involve gene expression. The overall biological signal is weak due to small sample
volume, low intrinsic cell response, and extrinsic signal loss mechanisms. The low signal-to-noise ratio prob-
lem is aggravated during initial detection stages and limits the minimum detectable signal or, alternatively, the
minimum detection time. Taking into account the stochastic nature of biochemical process, we find that the
signal is accompanied by relatively large noise disturbances. In this work, we use genetically engineered
microbe sensors as a model to study the biochips output signal stochastic behavior. In our model, the microbes
are designed to express detectable reporter proteins under external induction. We present analytical approxi-
mated expressions and numerical simulations evaluating the fluctuations of the synthesized reporter proteins
population based on a set of equations modeling a cascade of biochemical and genetic reactions. We assume
that the reporter proteins decay more slowly than messenger RNA molecules. We calculate the relation between
the noise of the input signal �extrinsic noise� and biochemical reaction statistics �intrinsic noise�. We discuss in
further details two cases: �1� a cascade with large decay rates of all biochemical reactions compared to the
protein decay rate. We show that in this case, the noise amplitude has a positive linear correlation with the
number of stages in the cascade. �2� A cascade which includes a stable enzymatic-binding reaction with slow
decay rate. We show that in this case, the noise strongly depends on the protein decay rate. Finally, a general
observation is presented stating that the noise in whole-cell biochip sensors is determined mainly by the first
reactions in the genetic system with weak dependence on the number of stages in the cascade.
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I. INTRODUCTION

Cascades of biochemical and genetic reactions involved
in living cells are currently generating a major interest in
biological systems �1–3� and biomedical devices �4–6�. Re-
cently, several groups have reported on the use of genetically
engineered living cells as the main sensing element in whole-
cell biochips which converts cellular response to electrical or
optical signal �7–9�. The generation process of the reporter
proteins in living cells consists of a cascade of large number
of biochemical and genetic reactions. For example, in envi-
ronmental biosensing, processes such as DNA repair and
SOS response take place �4�. The generation process is sto-
chastic and the noise is pronounced at the initial detection
stage due to low concentrations of genetically engineered
living cells, slow response, extrinsic noise due to the detec-
tion system, and variations within the cell population. In this
work, we present a stochastic model for the synthesized re-
porter proteins population in biochemical cascades and ge-
netic system. We assume that the protein number determines
the intrinsic signal and noise and the mean and deviation of
the signal.

Recently, several groups have derived analytical expres-
sions for the fluctuations of the signals in the gene expres-
sion and biochemical network �10–18�. References �11,12�

present both experiment and theory describing the origin of
intrinsic noise in gene expression and gene regulatory net-
works. They define the “noise strength” by the ratio between
the signal variance and its average and show that in steady
state, the noise strength of the number of proteins is greater
than what could be calculated using the Poisson statistics.
The noise strength is dominantly determined by the ratio
between the translation rate and the decay rate of the mes-
senger RNA �mRNA�. Reference �13� analyzed the noise of
an ultrasensitive signaling cascade and showed that when the
ratio between the differential amplification factor and the de-
cay rate is smaller than 1, the magnitude of fluctuations can
be bounded. References �14–16� presented the relation be-
tween the extrinsic noise and the intrinsic noise in biochemi-
cal reactions. Reference �17� analyzed the noise of autoregu-
lated gene circuits in the frequency domain and presented a
simple expression for the variance of the protein population
by assuming that the mRNA typically decays much faster
than the protein. Using the same assumption, Ref. �18� pre-
sented an approximation that allows the estimation of distri-
bution proteins number.

The problem that is addressed in this paper is how the
fluctuations in gene expression are influenced by a series of
biochemical reactions �cascade� such as in genetically engi-
neered living cells. We derive a simple relation �Eq. �6��
between the noise strength of the number of synthesized re-
porter proteins and the power spectral density function of the
number of mRNA molecules. This relation is referred to as
the spectral intensity theorem of gene expression. The rela-
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tion is based on the Wiener-Khintchine theorem and on the
fact that most of the synthesized proteins are rather stable
and have half times much larger than that of the mRNA
�17,18� and other chemical species. The model is studied in
three different biological systems, including a cascade of
biochemical reactions, gene expression, and enzymatic-
binding reactions.

II. GENERAL MODEL

In this section, we model the protein expression in engi-
neered living cells which contain engineered plasmids with
promoter-reporter gene conjugation. In such systems, there
are promoter genes that activate bioreporter expression in the
presence of some chemical analytes. The gene promoter is
transcribed into a mRNA. The information is further trans-
lated into a reporter protein which can be detected by either
electrochemical, electrical, or optical methods �4�. Figure 1
shows a schematic model of a cascade of biochemical and
genetic reactions in genetically engineered living cells. In
our model, we consider a system with one input �X0� and one
output signal �E�. X0 is the number of the analyte molecules
and E is the resulted number of the reporter proteins. The
system includes a cascade of n coupled linear biochemical
reactions where Xi is the number of molecules in the output
of reaction i. The cascade also contains enzyme
�W�-substrate binding reaction which can be described by the
Michaelis-Menten kinetics. The approximated model is
based on the following assumptions:

�i� The generation rate of each molecule Xi depends only
on the number of the molecules of the pervious reaction Xi−1
and in which Xi itself degrades by a first-order decay equa-
tion

dXi

dt
= aiXi−1 − biXi, �1�

where ai and bi are the differential amplification and the
decay rate �both in units of �1/min�� of the ith reaction, re-
spectively. Here, Xi is the mean value of the random variable
Xi.

�ii� We assume a stable system in steady state where all
coefficients are time independent.

�iii� The signal fluctuations are much smaller than the
signal average; therefore, we can linearize the differential
stochastic equations.

�iv� The noise in the input of every reaction is uncorre-
lated with that in the processing reaction �the intrinsic noise
reaction�.

�v� The intrinsic noise of each reaction is constituted with
steady-state Poisson statistics.

�vi� The enzyme W constitutes a reservoir, i.e., we neglect
its time variation since we assume it is rather small during a
typical relevant observation period.

In this work, we use the Langevin technique �19� to
model the random fluctuations. The Langevin equation can
be systematically derived from the master equation �20�
when random variables �signals� are treated as continues
variables and the stochastic effects enter by adding a time-
dependent term noise � j�t� to the deterministic dynamical
equations. The term � j�t� describes the intrinsic noise of the
reaction j in the cascade and is modeled as a Gaussian white-
noise source where the fluctuations are uncorrelated in time.
We assume the following characteristics for its statistics:
�� j�t��=0 and �� j�t�� j�t+���= �� j

2�����, with j= i ,E and ����
is the Dirac � function.

The output of the genetic system in our model is simply
determined by the translation process. The chemical Lange-
vin equation of the translation process around the steady
state is described by �11,12�

d�E

dt
= c1�R − c2�E + �e�t� , �2�

where c1 is the translation rate �1/min� and c2 is the decay

rate of the reporter protein �1/min�. Here, �E=E− Ē is the
deviation of the number of reporter proteins �E� from its

mean Ē and �R=R− R̄ is the deviation of the number of

mRNA molecules �R� from its mean R̄. In the steady state,

we obtain Ē=c1R̄ /c2. Fourier transformation of Eq. �2�
yields the power spectral density function of the number of
reporter proteins which is presented by the schematic model
that is shown in Fig. 2 and expressed by

�E2��� =
c1

2�R2��� + ��e����2

�2 + c2
2 . �3�

According to the Wiener-Khintchine theorem �21�, the fluc-
tuations value of the number of reporter proteins at steady
state is given by the inverse Fourier transform of the power

FIG. 1. Schematic model of a cascade of biochemical and ge-
netic reactions.

FIG. 2. Schematic model of the power spectral density function
of the translation process.
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spectral density function at �=0 �integrating Eq. �3��,

�E2 = �
−�

� c1
2�R2���
�2 + c2

2

d�

2�
+

�e
2

2c2
. �4�

We now assume that the intrinsic noise �the second term of
Eq. �4�� is constituted with the steady-state Poisson statistics

��E2= Ē �11�� which yields the noise �e
2 magnitude ��e

2

=2c1R̄�. We assume that the intrinsic noise is due to the
reaction of synthesizing the reporter proteins and that the
extrinsic noise is due to the contribution of the mRNA mol-
ecules. Therefore, since both sources are uncorrelated, the
total power spectral density function of the number of re-
porter proteins can be written as a sum of the intrinsic noise
�down path� and extrinsic noise �up path� contributions
�14–16�.

In the steady state, the translation process can be modeled
as a low-pass filter amplifier with the following characteris-
tics: E���=g���R���, a gain g���=c1 / �j�+c2�, and a cutoff
frequency �cg	c2 �−6 dB�. Therefore, we consider a signal
R�t�, with a power spectral density function �R2���, which
is applied to an amplifier with a gain g���. According to the
spectral intensity theorem �21�, the output signal variance
can be calculated as �E2=
 d�

2��R2����g����2 �see Eq. �3��.
Next, we assume that the bandwidth of the effective ampli-
fier gain, g���, is narrower than that of the input signal �the
number of the mRNA molecules�. Therefore, the variance of
the output signal �the extrinsic component which is contrib-
uted by mRNA molecule fluctuations� can be calculated by
the following approximation:

�E2 	 �R2��cg�� d�

2�
�g����2. �5�

Substituting the gain of the amplifier ��g����2=c1
2 / ��2+c2

2��
and the cutoff frequency ��cg=c2� into Eq. �5�, we obtain the

extrinsic noise �E2	�R2��=c2�
c1

2

2c2
and the total noise

strength of the reporter protein population can be expressed
as

�E2

Ē
	

c1�R2�� = 0�

2R̄
+ 1. �6�

In Eq. �6�, we used again the assumption that the power
spectral density function of R is constant in the given fre-
quency range �R2���	�R2��=0�	�R2��=c2�. The value

of �E2 / Ē can be determined experimentally and yield the
value of �R2��=0� �Eq. �6��. Usually, proteins are consid-
ered to be stable with lifetime greater than that of mRNA
molecules and other chemical species, thus making the as-
sumption c2	BWR is reasonable �17,18�. Using the previous
assumption and approximation, we can describe the power
spectral density function of the reporter proteins population
as

�E2��� 	 ��R2�� = 0� +
2R̄

c1
��g����2. �7�

III. MODELING SINGLE STAGE OF GENE EXPRESSION

In this section, we focus on the statistics of single-stage
gene expression modeling. This case was investigated ex-
perimentally and theoretically in various works �11,12,17�.
We present here a different treatment using the spectral in-
tensity theorems for describing gene expression �Eq. �6��.
Focusing only on the cell behavior, we consider here only the
intrinsic noise ��X0

2=0�. The power spectral density function
of the number of mRNA molecules can be expressed as �11�

�R2��� =
2aX0

��2 + b2�
, �8�

where a and b are the transcription and the decay rates of the
mRNA molecule, respectively. Substituting expression �8�
into Eq. �6� for �=0 yields the noise strength of E,

�E2

Ē
	 1 +

c1

b
. �9�

The ratio c1 /b was defined as the burst size �11�. One further
note is that in this specific example, the bandwidth of the
power spectral density function �R2��� is simply equal to
BWR=b. However, since usually protein decay rates are
much smaller than mRNA molecule decay rates, we get b

c2 and therefore c2 /b	1.

IV. MODELING BIOCHEMICAL CASCADE AND GENE
EXPRESSION

In this section, we expand the model to describe a series
of linear biochemical and genetic reactions. In this genetic
system, we assume that all the biochemical reactions can be
described by a set of linear first-order equations. According
to the general assumptions in Sec. II, we can write the
chemical Langevin equations which describe our model as

dXi

dt
= aiXi−1 − biXi + �i�t� ,

dR

dt
= anXn−1 − bnR + �n�t� ,

dE

dt
= c1R − c2E + �e�t� . �10�

In order to simplify the analytical solution, we assume that
all the differential amplification rates are equal �ai=a, for i
=1. . .n� and all the decay rates are equal �bi=b for i=1. . .n�.
In steady state, we obtain Xi= �a /b�iX0, R̄= �a /b�nX0 �for i
=1. . .n�. The power spectral density function of variable Xi
which describes the number of the molecules in the output of
reaction i is given by

�Xi
2��� =

ai
2�Xi−1

2 ��� + ��i����2

�2 + bi
2 . �11�

The fluctuations value for the number of the molecules in the
output of reaction i in steady state is given by integrating Eq.
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�11�, hence �Xi
2=
−�

� a2�Xi−1
2 ���

�2+b2
d�
2� +

�i
2

2b . Next we assume that
the intrinsic noise �the second term of the pervious term� is
constituted with the steady-state Poisson statistics of bio-

chemical reactions ��Xi
2=Xi, �R2= R̄, �E2= Ē� which yields

the noise � j
2 magnitudes ��i

2=2b�a /b�iX0, �E
2 =2c1R̄�. Substi-

tuting the value of �i
2 into Eq. �11� will give the power spec-

tral density function ��R2���� of the number of mRNA mol-
ecules �Xn=R�,

�R2��� =
a2n�X0

2���
��2 + b2�n + 

i=0

n−1
2an+iX0

bn−i−1��2 + b2�i+1 . �12�

A similar expression has been derived before �13�. Figure
3�a� shows the frequency-dependent intrinsic noise �power
spectral density function� of the mRNA molecules number
�the second term of Eq. �12�� as a function of the cascade
length n when a /b=1. As the cascade length increases, the
bandwidth of the power spectral density function decreases.
Figure 3�b� shows the cutoff frequency �c �−6 dB� depen-
dence on the cascade length as a function of the ratio a /b.
The cutoff frequency has a power-law dependency on the
cascade length ��C�n−�/a/b�, where � is a parameter that
depends on both a and b.

The variance of the signal in the steady state is given by
integrating Eq. �12�

�R2

R̄
=

x�x�a/b�n

b��n
+ �1 + 

j=1

n−1
�a/b� j

��j
� . �13�

For simplicity, we assumed that the power spectral density
function of the input signal has the form �X0

2���=�0
2 / ��2

+�x
2� and its variance �X0

2=2�0
2 /�x=xX0. In this case, the

result that is presented in Eq. �13� is constituted with Ref.
�13�. The first term represents the extrinsic noise and the
second term represents the intrinsic noise of the cascade. In
the case that c2	b, the cutoff frequency �−6 dB� is very
small compared to the cutoff frequency of �R2��� which is
given by ��C�n−�/a/b�. Hence, substituting the expression of
Eq. �12� into Eq. �6� for �=0 yields the noise strength of the
number of reporter proteins

�E2

Ē
=

xc1�a/b�n

�x
+ �1 +

c1

b

j=0

n−1

�a/b� j� . �14�

The first term in Eq. �14� represents the extrinsic noise and
the second term represents the intrinsic noise of the system.
The simulation results were calculated by Gillespie’s algo-
rithm for stochastic coupled chemical reactions �22�, which
is a based on Monte Carlo simulation. In this simulation,
each chemical reaction follows Poisson statistics: �1� the
probability of a reaction with rate k happening in a time dt is
given by kdt and �2� the waiting times between successive
reactions are exponentially distributed. Figure 4 demon-
strates the approximated theoretical model and the simula-
tion results of the intrinsic noise strength of the mRNA mol-
ecules number and the proteins number as a function of the
cascade length n �Eqs. �13� and �14��. The theoretical model
results are in good agreement with the simulation results. We

(b)

(a)

FIG. 3. �Color online� �a� Frequency-dependent intrinsic noise
�power spectral density function� of the mRNA molecules number
�the second term of Eq. �12�� as a function of the cascade length n
when a /b=1. �b� Cutoff frequency �c �−6 dB� dependency on the
cascade length as a function of the ratio a /b.

(b)(a)

(c)

FIG. 4. �Color online� Monte Carlo simulation and theoretical
model results of the intrinsic noise strength for the mRNA mol-
ecules and proteins number as a function of cascade lengths �a�
a /b=0.9,1 ,1.1, c1 /b=1, and c2 /b=0.01; �b� c1 /b=0.1,1 ,10, a /b
=1, and c2 /b=0.01. �c� Simulation results of the intrinsic noise
strength for proteins number as a function of translation rate ratios
c2 /b, a /b=1, c1 /b=10, and n=10.
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find that the intrinsic noise strength �E2 / Ē shows a strong
positive dependence on the transcription rate ratio �c1 /b�
�Fig. 4�b�� and on the differential amplification rate ratio
�a /b� �Fig. 4�a��. This is in contrast to a weak dependence of
the intrinsic noise strength on the translation rate ratio
�c2 /b�. Figure 4�c� shows that for

c2

b �
1

30 �n=10�, there is a
very weak dependence on the translation rate ratio �c2 /b�
and the approximated theoretical model results �dotted line�
are matching the simulation results. However, when the ratio
c2 /b�1, the approximated theoretical model results are dif-
ferent from the simulation results.

We discuss two cases describing the biochemical cascade
and genetic system in two relevant situations:

�1� “Buffer signaling cascade”—R̄=X0. Substituting a /b
=1 into the relevant terms in Eqs. �13� and �14� yields

�R2

R̄
	 1 + �n,

�E2

Ē
	 1 +

c1

b
n . �15�

The relation of the intrinsic noise strength of the number of
reporter proteins indicates that the burst size increases n
times compared to the “single stage.” We also found that the
intrinsic noise strength of the number of mRNA molecules
has a root square dependence on the cascade length.

�2� “Ultrasensitive signaling cascade” �13,15�, where

a /b�1 and R̄�X0. In this case, the intrinsic noise strength
of the number of mRNA molecules and reporter proteins
increases as the cascade length n increases and reaches a
limit for large n. Following Eq. �13� and assuming �x /b

1, the extrinsic noise becomes the dominant source in the
fluctuations value of the number of mRNA molecules �1 /�x
is the time constant of the input signal�. However, taking Eq.
�14� and assuming a /�x
1, the intrinsic noise becomes the
dominant source in the fluctuations value of the number of
reporter proteins.

V. MODELING BIOCHEMICAL CASCADE AND GENE
EXPRESSION WITH STABLE REACTIONS

In this section, we model a system with a biochemical
cascade and gene expression including stable reactions.
Here, we call a reaction a stable reaction when the product of
the reaction Xi has a decay rate which is much smaller than
the mRNA molecules decay rate. In this case, the assumption
c2	max�bi� is no longer valid and the noise treatment
should be different from the pervious example. For the sake
of simplicity, we assume that there are two stable reactions in
the genetic system including the translation process �Fig.
5�a��. We divide the cascade to two subcascades �Fig. 5�b��.
The first one with a length n including all the reactions from
X0 until the first stable reaction �i=1. . .n�. The second cas-
cade with a length n2 and it includes all the reactions which
occur after the stable reaction until generating the mRNA
molecules �j=1−m�, when n+m=n� �n� is the length of the
original cascade�. We assume that all the differential ampli-
fication rates for every cascade are equal �ai=a1 , aj =a2�
and also all the decay rates for every cascade are equal �bi
=b1 , bj =b2� when k2 ,k1	b1 ,b2. We consider the total

(b)

(a)

(c)

FIG. 5. �Color online� Modeling of a biochemical cascade ge-
netic system and gene expression including a stable reaction. �a�
Schematic model of biochemical reactions. �b� Schematic model for
the power spectral density function. �c� Simulation results and the-
oretical model results of the intrinsic noise strength for proteins
number as a function of the binding-enzymatic rates b1=b2=1,
a1 /b1=0.9, a2 /b2=0.9, n=m=10, c1 /b2=10, and �c2+k2� /b2

=0.02. Solid line is the analytical model �Eq. �16��, dotted line is
the analytical model of the first term of Eq. �16�, dashed line is the
analytical model of second term of Eq. �16�, circles are the simula-
tion results of the total noise in the case of enzymatic reaction, and
triangles are the simulation results of the total noise in the case of
binding reaction.
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noise of the first cascade and the stable reaction as the input
noise of the second cascade �Fig. 5�b��. Using directly Eq.
�14� when x� k

b1
i=0

n−1�
a1

b1
�i+1 is the total intrinsic noise

strength of the first cascade and the stable reaction, and using
�x�k2, one could express the intrinsic noise strength of the
reporter proteins number as

�E2

Ē
=

c1

c2 + k2
�a2

b2
�m� k

b1

i=0

n−1 �a1

b1
�i

+ 1� +
c1

b2

j=0

m−1 �a2

b2
� j

+ 1

�16�

�in Eq. �14�, we assumed that �x
c2�. The first term repre-
sents the total noise contributed by the first cascade and the
stable reaction and the second term represents the noise con-
tributed by the second cascade and synthesizing the reporter
proteins �the second stable reaction�. The relation between
the output and the input of every cascade �Fig. 5�b�� is de-
termined by Eq. �12�,

�Xn
2��� =

a1
2n�X0

2���
��2 + b1

2�n + 
i=0

n−1
2a1

n+iX0

b1
n−i−1��2 + b1

2�i+1 , �17�

�R2��� =
a2

2m�P2���
��2 + b2

2�m + 
j=0

m−1
2a2

m+jR̄

b2
m−j−1��2 + b2

2� j+1 , �18�

where P�t� is the signal with a power spectral density func-
tion �P2��� which is applied to an amplifier with a gain
h��� and can be expressed as �P2���= ��Xn

2���
+Xnk /2��h����2. In the case where k1	b1, the power spectral
density function of P can be approximated using the spectral
intensity theorems �Eq. �7��

�P2��� = ��Xn
2�� = 0� + 2Xn/k��h����2. �19�

In Sec. II, we assumed �see Eq. �6�� that the bandwidth of the
power spectral density function of R ��R2���� is much
smaller than the cutoff frequency ��gc=c2� of the amplifier
g���. However, in the case where there are multiple stable
reactions, the cutoff frequency ��hc=k2� of the amplifier
h��� can be of the same order as the cutoff frequency of R.
Therefore, we use a modified equation which is given by

�E2 = �a2

b2
�2m� d�

2�
�P2����g����2 + Ē

c1

b2

j=0

m−1 �a2

b2
� j

+ Ē .

�20�

Substituting the relevant expressions in Eq. �20� and solving
the analytical integral, we will obtain Eq. �16�. The noise
strength which is expressed in Eq. �16� strongly depends on
the decay rate of the reporter protein in contrast to the bio-
chemical cascade which was given in Sec. IV and the single
stage modeling in Sec. III. In the case where a2 /b2�1, the
first term �Eq. �16�� decreases as the cascade length in-

creases, however, the second term �Eq. �16�� increases. Fig-
ure 5�c� compares between the approximated analytical
model �Eq. �16�� and the simulation results. We simulate two
types of stable reactions: enzymatic reaction �Fig. 5�a�� and

enzyme-substrate binding reaction �Fig. 1� when k=k1W̄. In
the first type, we assumed that extrinsic and intrinsic noises
are uncorrelated sources; however, in the binding reaction,
the sources are correlated �16�. This effect is shown in the
simulation results of Fig. 5�c�; for the case k
b, the binding
reaction contributes strongly the signal Xn and decreases the
noise strength �Fig. 5�c�, triangles plot�. For very fast
enzymatic-binding rate, the noise is determined mainly by
the first cascade. For very slow enzymatic-binding rate, the
first term is constant and is independent on the first cascade
parameters �n ,a1 ,b1�.

VI. CONCLUSION

Engineered living cells can be integrated with electronic
circuits on the same microchip, which is often referred to as
a micrototal analysis system ��-TAS� or “lab on a chip” such
as whole-cell bioluminescent-electrochemical biosensors.
These living cells are considered to be the main element on
the integrated system and play a major role in determining
the signal-to-noise ratio of the full integrated system. In this
work, we present a stochastic model for cascades that include
biochemical and genetic reactions in genetically engineered
living cells. The theory is referred to the spectral intensity
theorems of gene expression �17�. Our approach is valid
when the protein decay rate is smaller than mRNA molecules
and other chemical species decay rates. We showed that in
biochemical cascade and gene expression systems, the fluc-
tuations value in the number of reporter proteins has a linear
dependence on the cascade length ��n� and the fluctuations
value in the number of mRNA molecules has a root square
dependence on the cascade length ���n�. We also showed
that the burst size increases approximately n times compared
to a single stage of gene expression. It is possible to design
the genetic system such that the intrinsic noise of the reporter
proteins number is bounded and in some cases, the noise of
the input signal will be the dominant source.

We also analyzed that a cascade of biochemical and ge-
netic reactions includes a stable enzymatic-binding reaction.
This example describes many biological systems such as
analyte-receptor binding or enzyme-substrate binding reac-
tions. We observed that for very fast binding rate, the noise is
mainly determined by the first biochemical reactions in the
cascade with a weak dependence on the cascade length. In
such systems, the fluctuations in the gene expression strongly
depend on the decay rate of the synthesized protein. Finally,
we have built a model based on the first-order rate equations
and we believe that such model should deal also with other
biosystems such as repressor interactions �23� and feedback
biological circuits �17,24�.
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